プロセスばらつきを考慮した 遅延計算モデルの提案と ばらつき要因解析

(社)電子情報技術産業協会デシミクロン設計研究会 配線ばらつきタスクグループ

栗山茂(三菱),菊地原秀行(沖),安島裕恵(日立),永瀬圭司(シャープ),坂田明雄(東芝),山口龍一(松下)

1.2 目的

- 以下の項目の評価を目的とする
 - 個々のゲートばらつきがパスばらつきに与える影響は?
 - 個々の配線ばらつきがパスばらつきに与える影響は?
 - 世代毎のばらつきは異なるのか?
- ばらつき解析プログラムを開発
 - ゲート、配線、パスをモデル化
 - 世代毎のばらつきを解析
 - ゲート遅延ばらつきと配線遅延ばらつきを比較

3. ゲートモデル

3.1 トランジスタモデル(1)

•トランジスタのオン抵抗

ショートチャネル領域での高電界によるキャリア速 度飽和現象を考慮して、α乗ドレイン電流式を用い て算出

 $Rd = Vdd / Ids^{*1}$

 $= \frac{\sqrt{dd}}{\beta * [(\sqrt{gs} - \sqrt{th})^{\alpha}])}$ $\alpha = 1. 3, \beta = \mu \cdot Cox \cdot W / Lg, Cox = \varepsilon 0 \cdot \varepsilon ox \cdot Lg \cdot W / Tox$ *1:T.Sakurai et al.,IEEE J. Solid-State Circuits,Vol 25,No.2,Apr.,p584-594,1990

トランジスタ酸化膜容量とソース/ドレイン部でのP N接合容量の和として見積もられるが、容量的に支 配的なゲート酸化膜容量にてゲート容量を算出

 $Cox = \varepsilon 0 * \varepsilon ox * Lg * W / Tox$

3.1 トランジスタモデル(2)

• α 乗ドレイン電流式の近似精度評価

• 精度良く近似できることを確認

3.2 入力スルーの変動(1)

入力スルーTr/Tfの変動は、出力段トランジスタのオン抵抗(Rd)を変動させる
 Tr/Tfを変化させたシミュレーション結果からtslewを測定して、Rdを逆算し、オン抵抗の入力スルーに対する感度を求める

_	$\overline{C_{out} \times \ln(0.9)}$
	$Cout \times \operatorname{In}(\overline{0.1})$

cell	pin	mode	а	b	
in.	^	rise	0.3978	0.5969	
Inv	А	fall	0.445	0.5518	
nd	^	rise	0.4295	0.5666	
	А	fall	0.2969	0.7038	
	В	rise	0.4357	0.5611	
		fall	0.2724	0.732	
nr	А	rise	0.2182	0.7868	
		fall	0.4584	0.5396	
	В	rise	0.237	0.7649	
		fall	0.4634	0.5339	
buf2	А	rise	0.0526	0.9488	
		fall	0.0583	0.9411	
buf16	۸	rise	0.1214	0.8857	
	А	fall	0.1144	0.8967	

$$Rd = slew \times a + b$$

3.2 入力スルーの変動(2)

2002年 電子情報通信学会 ソサイエティ大会

3.3 多入力ゲートモデルの検討(1)

インバータと多入力ゲートのばらつきをオン抵抗(Rd)で評価。Rdは入力スルーの評価と同様に求めた。

- 500回のモンテカルロに よるSPICEシミュレーション
- ばらつかせたパラメータと ばらつき量

パラメータ	3σ
ゲート長(<mark>Lg</mark>)	20%
ゲート幅(<mark>W</mark>)	Lgと同量
しきい値(<mark>Vth</mark>)	20%
ゲート酸化膜厚(<mark>Tox</mark>)	20%

- セル内のNMOSとPMOSは独立にばらつかせた
- Cout=fanout2、Tr/Tf=クロック周期の5%
- Inverter、2入力NAND/NORで評価

3.3 多入力ゲートモデルの検討(2)

2002年 電子情報通信学会 ソサイエティ大会

2002 ©JEITA, All rights reserved.

3.3 多入力ゲートモデルの検討(3)

- 多入力NAND、NORの方がInverterに比べてばらつき(3σ) が3%~10%(2005年)大きい。これは、カスケード接続による MOSの基板バイアスの効果のためと推測される。
- 多入力ゲートの入力ピンによってもばらつきに差(4~7% (2005年))があり、カスケード接続の電源側のMOSが動作 する状態でばらつきが大きい。このとき、実効的なRdが小 さくなるためと推測される。
- ・ 以降の解析では、ゲートモデルは a ↓ ↓ 基板バイアス Inverterで代表
 b ↓ 実効的にIds大

4. 配線モデル

• 配線容量/抵抗表現式

5. パスモデル(1)

パス1段あたりの遅延計算式
 ゲートモデル、配線モデルの組み合せ

 $Tpd = 0.7 \times Rd \times (Cw + Cg) + 0.7 \times Rw \times Cg + 0.4 \times Rw \times Cw$

T.Sakurai, "Closed-form expressions for interconnect delay, coupling, and Cross-talk in VLSI," IEEE TED, vol.40, 1993

5. パスモデル(2)

- パスモデル
 - →ブロック内・ブロック間の配線階層を想定した回路モデルで特 性解析を実施
 - インターミディエイト配線 :ブロック内配線を想定した配線と駆動セル
 グローハル配線 :ブロック間配線を想定した配線と駆動セル

→インターミティエイト配線とグローバル配線の組合せでパスを構成

• パスモデルを構成するゲート段数

→ITRS1999(参考:2000Update) high-performance ASICの 動作周波数から換算

6. ばらつき解析プログラムの概要(1)

● SPICEモンテカルロシミュレーションで発生させた乱数(ばらつき)を活用

7. ばらつき要因解析

7.1 トレンド解析の水準

- ●解析の種類
 - ●テクノロジ世代
 - ●2005年(100nm) / 2008年(70nm) / 2011年(50nm)
 - ●パラメータ変動条件
 ●全パラメーター括 / ゲートパラメータ / 配線パラメータ (ばらつきに相関なし)
 ●全パラメータ個別

●水準

					パフエゴル			
	1	1ンダーミナイエイト配禄		クローハル記録				
構成	インバータ 4段 インターミディエイト配線		バッファ 4段 グローバル配線		インバータ 10段 インターミディエイト配線 + バッファ 2段 グローバル配線			
駆動能力	X 2		X 16		X 2(インバータ), X 16(バッファ)			
配線長	配線ピッチの100倍		配線抵抗がオン抵抗 と等しくなる長さ		左記インターミディエイト、 グローバル配線長			
		Lg(p∕n)	Tox(p∕n)	Vth(p/n)	Vdd	配線幅 Ww	配線膜厚 Tw	ビア高 Hw
ばらつき設定量 (3 <i>o</i>)		10%	4%	12.5%	10%	10%	10%	10%
							atala2 去 参	

2002年 電子情報通信学会 ソサイエティ大会

2002 ©JEITA, All rights reserved.

7.2 世代毎のばらつき解析(1)

インターミディエイト配線

 インターミディエイト配線駆動モデルでは、いずれの世代においても ばらつき要因はゲートばらつきが支配的

7.2 世代毎のばらつき解析(2)

グローバル配線

7.3 パス遅延ばらつきの要因解析

- ゲートばらつきパラメータの中でも、ゲート長(Lg)のばらつきへの 影響度が高い
- 電源電圧 (Vdd)やVth変動によるIdsの変動が遅延ばらつきに及ぼす 影響が大きい

7.4 パス段数依存性解析

- インターミディエイトはゲート段数が増えるにつれてばらつきは減少
- トータルパスでは、グローバル配線の影響が大きくなりばらつき量は 増加

7.5 ゲートばらつきと配線ばらつきの感度解析(1)

- ここまでの解析では、ゲートばらつきが支配的
- ゲートばらつきと配線ばらつきのパスばらつきに対する
 感度解析が必要
- グローバル配線を変化させて、感度解析
 - Rw/Rdで正規化した配線長を変化させて感度解析を 実施

	Rd (x16) [Ω]	Rw [Ω∕mm]	正規化配線長(Rd/Rw) [mm]
2005年	217	154	1.411
2008年	234	288	0.812
2011年	227	396	0.573

7.5 ゲートばらつきと配線ばらつきの感度解析(2)

Rw/Rdで正規化した配線長に対し、正規化配線長が4を越えるあたりからゲートばらつきと配線ばらつきの影響度が逆転し、配線ばらつきがパス遅延に与える影響が支配的になる。

8. まとめ

- ばらつきがパス遅延に及ぼす影響を定量的に計算する手法を提案
 - ゲートモデルは、α乗ドレイン電流式を用いたオン抵抗で近似
 - 配線モデルは、平行平板モデルを仮定
 - 入力スルーの変動をオン抵抗の変動へ反映
- 上記手法を用いて、ばらつきのトレンド/要因解析を実施
 - ゲート遅延=配線遅延となるような設計スタイルでは、パス遅延のばらつきは世代に因らずゲート遅延が支配的
 - ゲート遅延ばらつきはLg,Vth,Vddの影響度が高い
 - ゲート段数が増えると、パス遅延のばらつきは小さくなる

9. 今後の課題

•EDAツールでの実現可能性の検討

パスを構成するゲートの段数に応じて、ばらつき量を制御 できるタイミング検証ツールが必要となる。

•設計指針の提示

正規化配線長が4(Rw/Rd>4)を超えるようなパス設計においては、配線ばらつきも考慮したタイミング検証が必要となる。