System Level Design Technologies and System Level Design Languages

SLD Study Group EDA-TC, JEITA

http://eda.ics.es.osaka-u.ac.jp/jeita/eda/english/project/sld/index.html

Problems to Be Solved

System Level Design Technologies

Research Target

- "EDA Technology Roadmap Toward 2002" EIAJ/EDA-TC/EDA Vision Study Group (1998)
- Universities/Research Centers
 - POLIS http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html "Hardware-Software Co-Design of Embedded Systems, The POLIS Approach" Kluwer Academic Publishers(1997)
 - OCAPI-xI http://www.imec.be/ocapi
 - IpChinook http://www.cs.washington.edu/research/chinook/index.html
- Vendors

N2C

- CoCentric http://www.synopsys.com/
 - http://www.coware.com/
- VCC http://www.cadence.com/

Roadmap of EDA Technologies

					In the prediction, almost all technologies are in the trial		
Items	1997	1998	1999	20	phase in 2000 !!		
[System Level Design]					How in the real world?		
Standardization of system model							
Standardization of system level design language(SLDL)							
Simulation of SLD Language							
Performance estimation in system level design				Í			
(application soft, compiler, performance estimation of HW, optimization)							
High speed prototyping							
Formal verification (Specification - System)							
HW/SW partition							
System level library (IP core, middle ware, etc.)							
Decision support of system level test strategy							
Tradeoff of analog/digital							
[Architecture Design]							
Standardization of architecture model							
Standardization of architecture description language							
Estimation in architecture level (area, delay, power,)							
Decision of RTL constraint							
(area, timing, power, budgeting of floor plan)							
Formal verification (\$ystem - Architecture)							
Validation/Simulation							
Architecture synthesis							
Co-synthesis							
Decision support of architecture level test strategy							
(test method/area/length of test)							
DFT in architecture level							

 \square :trial use \square :preceding use \blacksquare :practical use

Cited from EIAJ/EDA Technology Roadmap Toward 2002

Design Tools (1) by Universities and Research Centers

POLIS (UCB, U.S.A.)

·Co-design Environment for embedded system based on the CPU and DSP

Supporting functional design to prototyping

 Architecture exploration by mapping behavior to architecture

•Accurate and high-level performance estimation using a fuzzy instruction set

OCAPI-xI (IMEC, Belgium)

•C++ model which can describe HW and SW uniformly

•Optimal block partition using a performance analysis

 Automatic generation of VHDL / Verilog-HDL / C

IpChinook (U of Washington, U.S.A.)

•Based on IP-based/Reused-Design methodology

•Automatic generation of control and I/F between functional blocks

- Lots of communication protocol libraries
- •Support of Java Pia C

© JEITA 2001 All rights reserved

Design Tools (2)

by Vendors

•Support HW side and co-verification of SOC Design

Conversion from float to fix-pointed
HW Synthesis from behavior (Verilog,VHDL)
Supporting SystemC

N2C (CoWare)

- •Supporting functional level to implementation
- •System Definition in Untimed, BCASH, BCA abstraction levels by original C-based language (CoWareC)
- •Communication refinement
- •Interface synthesis between HW and SW
- Supporting SystemC (in future)

VCC(Cadence)

- •Architecture exploration by mapping function to architecture
- •Performance estimation using a fuzzy instruction set
- •Supporting IP reuse
- •Communication synthesis
- •Interface to implementation

Summary of EDA Trend

- May be solved in near future...?
 - Function Verification
 - Architecture Mapping
 - Performance Estimation
 - Interface Synthesis
 - HW/SW Co-Verification
- Unsolved Problems
 - Function Partition
 - High Speed Estimation
 - Estimation of Area, Cost, and Power
 - Standardized Description of system specification, constraints
 - etc. . . .

Proposed Design Flow

©JEITA 2001 All rights reserved

Design Space Generation

Block partitioning and architecture generation from function model

Profiling

Analyze function models statically/dynamically and extract information for block partitioning and architecture generation

Class	Information	Usage (in design space generation)
Number of Variable Access	 Number of read/write Access position Read-write distance 	 Choice of algorithm Decision of block candidates Selection of memory/register
Amount of Data Transfer	 Number of <u>(bits)*(number of exec.)</u> of read/write Amount of parameters 	 Decision of partitioning units Decision of HW/SW partitioning Selection of comm. protocol
Amount of Calculation	 •Execution count of lines •Execution count of blocks •Execution count of functions 	 Decision of partitioning units Performance estimation on HW/SW
Statistical Analysis	•Type and count of arithmetic/control instructions	 Choice of processor Refinement of instruction set

Design Space Exploration

Mapping each functional block to a component and select the optimum architecture which satisfies constraints

Architecture Mapping

Tradeoff of transaction model

Technology Map of Tools

		e verification is rted by all tools		N	lo tool su	pport		
Design	Phase	Tech	Tool1	Tool2	Tool3	Tool4	Tool5	Tool6
System Specification		Function Constraints	×	×	×	××	×	×
Function Det	ermination	Function Definiti Function Verificatio						
	Design Space Generation	Profiling Block Partitioning Architecture Generati Equivalence Check	×	×	×	×		
	Design Space Exploration	Architecture Mapping Performance Estimation						×
Interface to Implementation	on	Interface Synthesi HW/SW Co-D	×		×			
Test Bench		Test Ben rate		N				

Some tools support this phase but speed/accuracy of the estimation is insufficient : automated by the tool
: tool has supporting function
: tool does not have supporting function
× : not covered by the tool

No tool supports the test bench generation

Investigation of System Level Design Languages

Background

- Important role for system level design flow
- Standardization activities (OSCI, STOC, Accellera)

Objectives

- Understand standardization activities (SystemC, SpecC, UML, etc.)
- Evaluation of the proposed design flow
- Feedback to standardization groups

SystemC

- Background
 - Proposed based on the technologies of Synopsys Inc., CoWare Inc., Frontier Design Inc. (Sept 1999)
- Features
 - Representation from system level to HW/SW by adding dedicated class libraries, and without enhancing C/C++ grammar
 - Availability of standard C/C++ development environment
 - Less readability of description
 - Developed from HW design using C/C++ to system level
 - Easy to move from HDL environment
- Trends
 - Open SystemC Initiative (OSCI) promotes standardization
 - More than 70 of EDA vendors, IP vendors, semiconductor companies join to OSCI (Apr 2000)

SpecC

- Background
 - Developed by Prof. Gajski in UCI (1997)
- Features
 - Unified description of HW/SW by enhancing ANSI-C grammar
 - High readability
 - Needs special tools and environment
 - Clear design methodology which covers over system modeling to architecture determination
- Trends
 - SpecC Technology Open Consortium (STOC) promotes the standardization
 - System houses, embedded software tool vendors have strong interest

- Background
 - Developed as modeling language for complicated large system
 - Started the standardization since 1996 by OMG *1
 - Unification of existing object-oriented modeling methods
- Features
 - Visual language with high modeling ability
 - Visual and multi-viewed system modeling use case, class, component, layout, state chart, sequence, activity, collaboration
 - Scheme for describing constraints
 - Methodology of applying HW design is incomplete.
- Trends
 - Wide use in business software
 - Started to use in embedded software trial phase for HW design

¹ Object Modeling Group *² Booch Method, OMT Method, OOSE Method

ID=Set 值=0

Class Diagram

Evaluation Results

Language	SystemC (v2.0)	SpecC (v1.0)	UML (v1.4)
System Specification Function Constraints	× × not supported	× × not supported	visual description constraint language
Function Determination Function Definition Function Verification Architecture Determination Profiling Block Partition Equivalence Check	O less readability available C++ env.	clear methodology tool environment unified HW/SW desc.	only for SW only state chart × not supported × ×
Architecture Generation Architecture Mapping Estimation	only structure transaction model NG insufficient methodology	only structure transaction model NG insufficient methodology	× × ′ ×
Interface to Implementation HW/SW Co-Design	support until RTL	planned to support Accellera's RTL model	× not supported
Test Bench Generation IP Design	0	0	only specification

©JEITA 2001 All rights reserved

Summary of System Level Design Languages

- SystemC
 - Representation from system level to HW/SW by adding dedicated class libraries and without enhancing C/C++ grammar
 - Need to clarify the methodology
 - Strong support for implementation, but need to consider the architecture generation and the estimation
- SpecC
 - Unified description of HW/SW by enhancing ANSI-C grammar
 - A key to prevalence is to arrange special design environment to implementation
 - Methodology for system modeling exists, but weak for the architecture generation and later stages
- UML
 - Large ability of function/constraint description by visual modeling
 - Need to consider design phases after architecture design