
1

Capacitive Values Extension for std_logic_1164

Abstract

This paper proposes an extension of IEEE Std 1164 (MVL-9) for modeling Intellectual Properties
(IP’s) including dynamic circuits. The new logic values to be added to IEEE Std 1164 are three
capacitive values: C (capacitive unknown), D (discharge), and P (precharge), which are essential
for precise modeling of delay time and power dissipation with consideration of charge decay.
Proposed standard logic value package is described, then the behavior of realistic circuits is
illustrated. Finally, the impact of this extension on the current design environments and EDA tools
is discussed.

1 Introduction
IEEE Std 1164[2] (MVL-9) declares nine logic values, i.e. ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’ and ‘-’, as
“std_ulogic” type. These values would be complete enough to model most of static circuits. From
this reason, MVL-9 is adopted in the VITAL[3] libraries to model gate level circuits. As a number
of Intellectual Properties[5][6][7], e.g. IP’s, described in VHDL[1] are recently supplied, more
precise modeling of these variety of circuits is required.
However, when the behaviors of dynamic circuits are to be modeled using VHDL, it is difficult to
model them precisely with the existing MVL-9. For example, in the logic circuits fabricated using
quarter-micron technology, delay time and power dissipation calculated using MVL-9 are usually
larger than those of real circuits. These inaccuracies in delay time and power dissipation
estimation will become fatal problems when IP’s with the dynamic circuits are modeled in VHDL
and VITAL. One of the practical solutions to this problem is to add three capacitive values to
current IEEE Std 1164, which yield more accurate estimations of delay time and power dissipation
of these circuits.

The organization of this paper is as follows. In section 2, the static features of these new
capacitive values are discussed. In section 3, the idea of charge delay is described. In section 4, the
advantages of our proposal are shown. In section 5, the impacts of our proposal on the current
design environments and EDA tools are summarized. Finally, the possible implementation of the
extended resolution functions is discussed in section 6.

2 Static specification of proposed value set

2.1 Declaration of value set

The standard type “std_ulogic” is declared as an enumeration type of nine logic values, ‘U’, ‘X’, ‘0’,
‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, and ‘-’, in the standard package of IEEE Std 1164. In the current standard, ‘X’,
‘0’ and ‘1’ have strong strength, and represent the state of objects with low impedance drivers.
Then, ‘W’, ‘L’ and ‘H’ have weak strength, which are weaker than strong strength, and represent
the state of pull-up or pull-down through resistance. Finally, ‘Z’ has the weakest strength, and
represents the state of objects without any drivers. When CMOS dynamic circuits are designed,
the behaviors of charge and discharge are essential for accurate modeling. However, these
behaviors can not be accurately modeled in MVL-9.

Naohiro Kobayashi
Mitsubishi Electric Corporation

4-1 Muzuhara

Itami, Hyogo 664-8641 Japan
kobayas1@lsi.melco.co.jp

Masamichi Kawarabayashi
NEC Corporation

1753 Shimonumabe, Nakahara-ku

Kawasaki, Kanagawa 211-8666 Japan
kaba@lsi.nec.co.jp

2

The behavior of charge/discharge mechanism in a dynamic circuit can be explained as shown in
Figures 1 and 2. When the signal “ctrl” becomes ‘1’, signal “out” will be driven by a logic value that
has strong strength. Then charge or discharge will be performed on the capacitance. When “ctrl”
becomes ‘0’, “out” will be separated from any drivers, then the electrical charge will be preserved in
the capacitance for a while. At this time “out” has enough strength to drive the signal “next”, then
the value of signal “next” will be fixed with a certain logical value. However, the value of signal
“out” will become a “high impedance” due to the leakage current, then the signal “next” will reach
the “unknown” state.

In short when the state of a signal changes from a strong value to ‘Z’, some intermediate states
with capacitive strength should be considered to model the CMOS dynamic circuits more
accurately. This strength should be distinguished from ‘Z’ strength. Provided these capacitive
values were not used, when “ctrl” becomes ‘0’, the values of signals “out” and “next” will
immediately become ‘Z’ and unknown ‘X’, respectively. This behavior does not reflect the actual
physical phenomenon exactly. Thus, logical values with capacitive strength are indispensable as
well as strength of strong, weak and high impedance to perform more accurate modeling,
especially in the deep sub-micron designs.

Therefore, we propose to add three new values i.e. ‘C’, ‘D’, and ‘P’, to represent the capacitive
strengths, where ‘C’ (capacitive unknown) represents “capacitive with unknown charge” (positive
or negative charge); ‘D’ (discharge) represents capacitive with the existence of negative charge;
then ‘P’ (precharge) represents capacitive with the existence of positive charge. Proposed logic
values with these capacitive values are summarized in Table 1.

 2.2 Declaration of the strength between values

The signals with capacitive strengths can not preserve certain value for a long time due to the
leakage current. It is clear that these strengths are weaker than the strengths through resisters.
Therefore, the strengths of ’C’, ‘D’ and ‘P’ should be placed between weak and high impedance,

data

ctrl

capacitance

out next

strong capacitive

strong strong strong

strong
unknown

unknown

data

ctrl

out

next

Figure 1: Example for the circuit of

capacitive value

Figure 2: Example for the waveform of

capacitive value

Value
Strength

Low High Unknown

Initialize U
Strong 0 1 X
Weak L H W
Capacitive D P C
High Impedance Z

Table 1: Strengths and values

3

which are weaker than ‘U’, ‘X’, ‘0’, ‘1’, ’W’, ‘L’, ‘H’ and ‘-’, but stronger than ‘Z’.
 Two types of extensions can be considered. One is to declare a new type which has the different
name from “std_ulogic”, the other is to use the same type with additional 3 values. We select the
latter one for users’ convenience in this paper. These capacitive values are placed at the right end
of the “std_ulogic” declaration to preserve the compatibility as much as possible with existing
IEEE Std 1164. The new “std_ulogic”, called MVL-12 is declared as shown in Figure 3.

2.3 Declarations of logical operations and type conversion functions

Extensions of logical operations and type conversion functions are needed to treat capacitive
values in MVL-12. Extended type conversion functions are designed as follows.

(1) To_UX01

‘C’: The output is assigned to ‘X’ since it has an unknown value as ‘X’.
‘D’: The output is assigned to ‘0’ since it has a low value as ‘0’.
‘P’: The output is assigned to ‘1’ since it has a high value as ‘1’.

(2) “cvt_to_ux01”
The constant declaration of “cvt_to_ux01” is extended and shown in Figure 4.
(3) To_bit

‘C’: The output is assigned to ‘0’, which is the initial value of “bit” type, since it has an
unknown value and is treated similarly to the other values except for ‘0’ and ‘1’.
‘D’: The output is assigned to ‘0’ since it has a low value as ‘0’.
‘P’: The output is assigned to ‘1’ since it has a high value as ‘1’.

(4) To_X01

‘C’: The output is assigned to ‘X’ since it has an unknown value and is treated similarly to
the other values except for ‘0’ and ‘1’.
‘D’: The output is assigned to ‘0’ since it has a low value as ‘0’.
‘P’: The output is assigned to ‘1’ since it has a high value as ‘1’.

(5) To_X01Z

‘C’: The output is assigned to ‘X’ since it has an unknown value, and is treated similarly
to the other values except for ‘0’ and ‘1’, and is distinguished with ‘Z’.
‘D’: The output is assigned to ‘0’ since it has a low value as ‘0’.
‘P’: The output is assigned to ‘1’ since it has a high value as ‘1’.

TYPE std_ulogic IS
 ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-', -- Don't care
 'C', -- Capacitive unknown
 'D', -- Discharge 0
 'P' -- Precharge 1
);

Figure 3: Extended declaration of

std_ulogic type

CONSTANT cvt_to_ux01 :
 logic_ux01_table := (
 'U', -- 'U'
 'X', -- 'X'
 '0', -- '0'
 '1', -- '1'
 'X', -- 'Z'
 'X', -- 'W'
 '0', -- 'L'
 '1', -- 'H'
 'X', -- '-'
 'X', -- 'C'
 '0', -- 'D'
 '1' -- 'P'
);

Figure 4: Extended declaration of

“cvt_to_ux01” constant

4

(6) Is_X

‘C’: The output is assigned to “TRUE” since it has an unknown value, is treated similarly
to the other values except for ‘0’ and ‘1’.
‘D’: The output is assigned to “FALSE” since it has a low value as ‘0’.
‘P’: The output is assigned to “FALSE” since it has a high value as ‘1’.

 According to the discussion on the strength relation between values in section 2.2, the capacitive
values are weaker than strong values or weak values, but stronger than the high impedance value.
Therefore, the resolution function “resolve” can be extended as in the “resolution_table” shown in
Figure 5. Similarly, “and_table”, which is used in the logical operation “and”, is shown in Figure 6.

3 Dynamic specification of proposed value set

In this section we consider the dynamic behavior of the circuit, which uses the value set in MVL-12,
and discuss the implementation of charge decay.

3.1 Concept of charge decay

The static specifications of the value set in MVL-12 were discussed in the previous section. Though
the capacitive values ‘C’, ‘D’ and ‘P’ were added into the existing MVL-9, only the extension of the
value set is not sufficient in order to handle the capacitive values and to model the behavior of
dynamic circuits. The transition time for the capacitance should be considered.

CONSTANT and_table : stdlogic_table := (
-- --
-- | U X 0 1 Z W L H - C D P | |
-- --
 ('U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U', 'U', '0', 'U'), --| U |
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X', 'X', '0', 'X'), --| X |
 ('0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0'), --| 0 |
 ('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X', 'X', '0', '1'), --| 1 |
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X', 'X', '0', 'X'), --| Z |
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X', 'X', '0', 'X'), --| W |
 ('0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0'), --| L |
 ('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X', 'X', '0', '1'), --| H |
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X', 'X', '0', 'X'), --| - |
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X', 'X', '0', 'X'), --| C |
 ('0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0'), --| D |
 ('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X', 'X', '0', '1') --| P |
);

Figure 6: Extended declaration of “and_table” constant

CONSTANT resolution_table : stdlogic_table := (
-- --
-- | U X 0 1 Z W L H - C D P | |
-- --
 ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |
 ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X', '0', '0', '0'), -- | 0 |
 ('U', 'X', 'X', '1', '1', '1', '1', '1', 'X', '1', '1', '1'), -- | 1 |
 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X', 'C', 'D', 'P'), -- | Z |
 ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X', 'W', 'W', 'W'), -- | W |
 ('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X', 'L', 'L', 'L'), -- | L |
 ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X', 'H', 'H', 'H'), -- | H |
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | - |
 ('U', 'X', '0', '1', 'C', 'W', 'L', 'H', 'X', 'C', 'C', 'C'), -- | C |
 ('U', 'X', '0', '1', 'D', 'W', 'L', 'H', 'X', 'C', 'D', 'C'), -- | D |
 ('U', 'X', '0', '1', 'P', 'W', 'L', 'H', 'X', 'C', 'C', 'P') -- | P |
);

Figure 5: Extended declaration of “resolution_table” constant

5

When a signal with a strong value, is cut off from a driver, the stored charge is gradually lost
because of the leakage current. After a certain time, the signal becomes the high-impedance state.
Because of the attenuation of charge, which is called “charge decay”, the value of the signal may
change even if the MOS transistors in the circuit do not switch. Therefore, in order to determine
the change in values with the capacitance, we have to model not only the change of driver's value,
but also the charge decay. The former means the external factor, and the latter means the internal
factor.

3.2 How to describe charge decay

For dynamic circuits, we consider the resolution mechanism of the value, where two or more
drivers drive one signal. This situation should be handled by the resolution function in VHDL.
However, when considering the capacitance of the signal, the mechanism of the resolution function
in VHDL is not appropriate. Because only the external factor can be taken into account for the
resolution function, but the internal factor of charge decay cannot be considered.

A special entity within the existing VHDL specifications is introduced to simulate the behavior
of charge decay. The behavior of “capacitive” entity is shown in Figure 7. Input and output ports
are shared, and the output value is one of four values ‘Z’, ‘C’, ‘D’ and ‘P’ due to the input value. One
signal is declared to preserve the charged previous value. The behavior of charge decay is
described on the line of "when others". When the signal is not driven, the charged previous value is
preserve for “delay” time, which is defined as a generic parameter. Then, output value become high
impedance. Consequently the signal resolution mechanism with capacitance elements can be
described using this special entity.

A circuit example is shown in Figure 8 to simulate capacitance on the signal with the special
entity.

4 Effects of capacitive value extension
After the capacitive values ‘C’, ‘D’ and ‘P’ are added to the MVL-9, the accuracy of the gate-level
simulation can be improved. It was impossible to express the intermediate state between the
high-impedance ‘Z’ and the other values when we used MVL-9. Therefore, when signal transitions
occur in the intermediate state described above, the transitions cannot be analyzed precisely by
logic simulators. For the real circuits, the following three types of transition delay time are not the
same, while it is impossible to distinguish mutually using MVL-9.

 entity capacitance is
 generic (delay : time := 100ns);

 port (Tbus : inout std_ulogic
);
 end capacitance;

 architecture RTL of capacitance is
 signal Data : std_ulogic := 'Z';
 begin
 process(Tbus)
 begin
 case Tbus is
 when 'X'|'W' => Data <= 'C';
 when '0'|'L' => Data <= 'D';
 when '1'|'H' => Data <= 'P';
 when others => Data <= Data, 'Z' after delay;
 end case;
 Tbus <= Data;
 end process;
 end RTL;

Figure 7: Entity for capacitance

6

 (1) Signal transition delay from the intermediate state between ‘X’ and ‘Z’ to ‘1’.
 (2) Signal transition delay from the intermediate state between ‘0’ and ‘Z’ to ‘1’.
 (3) Signal transition delay from the intermediate state between ‘1’ and ‘Z’ to ‘1’.

The individual delay model cannot be assigned to each case when using MVL-9. Therefore,
when verifying the timing of circuits using MVL-9, the signal transition delay of the circuit is
always defined as the worst case of above three values.

Recently, high-performance and high-speed LSIs have been developed, and tight timing
constraints have been assigned to logic circuits. Precise delay models are required to design such
circuits. When we use MVL-12 proposed here, the individual delay value can be assigned to each
signal transition delay in the circuit. For the intermediate state in the (1), (2) and (3) can be
expressed by the value ‘C’, ‘D’ and ‘P’, respectively. The accuracy of the delay time can be improved
by introducing MVL-12, and models for precise timing can be realized. It is indispensable to design
high performance LSIs.

Similarly, the effectiveness of MVL-12 for the power dissipation is discussed. The rapid growth

weak

low

strong

Data1

Ctrl

Data2

Clock

Tbus

Dataout

low

strong capacitive weakstrong strong Z
X

Expected waveform using MVL-12 Simulation results using MVL-9

Figure 9: Waveforms for the example in Figure 8

Figure 8: Example for the modeling of ‘C’, ‘D’ and ‘P’.

Data1

Ctrl

out
DataoutData2

Clock

Tbus

“inv1” Dynamic Inverter
“trbuf” 3-state buffer with output

Tbus <=
 ‘Z’ when Ctrl = ‘0’ else
 ‘L’ when Data1 = ‘0’ else
 ‘H’ when Data1 = ‘1’ else
 ‘X’;

Process (Tbus)
Begin

Case Tbus is
When ‘1’|’H’ => Data <= ‘P’;
When ‘0’|’L’ => Data <= ‘D’;
When ‘X’|’W’ => Data <= ‘C’;
When others => Data <= ‘X’;
End case;
Tbus <= Data;

End process;

Process (Clock, Data)
Begin

If Clock = ‘1’ then
Tbus <= not Data;

Else
Tbus <= ‘Z’;

End if;
End process;

Large capacitance

7

of the market for portable electric appliances and the heat problem for LSI packages cause great
interest in low-power designs. As for the power dissipation, only one power model is assigned to
three types of the signal transition shown in the above example when using MVL-9 model. In order
to calculate precise power dissipation for the low-power design, the detailed power models are
required. The individual power models can be assigned to three types of the signal transitions
when using MVL-12 for designing low-power LSIs.
 An example using MVL-12 is shown in Figure 8. “trbuf”, “inv1” and “Tbus” are modeled in VHDL.
The VHDL description for “Tbus” is expressed with the capacitive values. The model for “Tbus”
cannot be represented with MVL-9. Figure 9 shows the input waveforms of the signals “Data1”,
“Ctrl”, “Data2” and “Clock”, and the waveforms of the signals “Tbus” and “Dataout” obtained by
the logic simulation. The expected simulation result with MVL-12 is shown on the left side of
Figure 9, and the simulation result with the MVL-9 is shown on the right.

We assumed that the output value of “trbuf” is equal to ‘Z’. In case of MVL-12, when the output
value of “inv1” changes from ‘1’ to ‘Z’, the value of “Tbus” changes from ‘1’ to ‘P’, then changes to ‘Z’
after “delay” time. Meanwhile, in case of MVL-9, the value of “Tbus” changes from ‘1’ to ‘Z’
immediately, and the intermediate state between ‘1’ and ‘Z’ cannot be considered. Consequently,
more precise modeling can be done with MVL-12 when designing the 3-state circuit structure.

Under the quarter-micron technologies, in proportion as the increase of the wire resistance for
the unit wire length, the wire delay has become dominant. Therefore, precise delay simulation or
analysis is essential for long wire signals. Because the capacitive values are introduced and delay
models of signals can be defined precisely, the precise analysis can be realized.

Power models can be also defined precisely. It is appropriate to use the precise models for
designing low-power and high-speed LSIs. Recently, the IP reuse techniques[5][6][7] have become
more popular. When reusing IPs with 3-state signal interfaces, the capacitive values can be used
more effectively.

5 Impacts on the current design environments
In this section we discuss the impact on the current design environments, e.g. VHDL language
specification, standards and EDA tools.

5.1 VHDL language specification

Some declarations in the standard library of IEEE Std 1164 should be modified because of the
extension of value set. All modifications of the declarations for the basic operators and the type
conversion functions are within the scope of the VHDL language specification. The resolution
mechanism of values on the signal is essential in order to represent the charge decay. Within the
scope of the VHDL language specification, it can be realized by introducing the special entity.
Consequently, there are no impacts on VHDL language specification when the extended value set
is introduced. However, we can investigate to extend the specification of the resolution mechanism
in VHDL. One of the further extension is discussed in section 6.

5.2 Standard library

Various functions in the STD_LOGIC_1164 package are re-declared owing to the re-declaration of
“std_ulogic” type. Note that the name of library, package, types and functions are not necessary
to be changed. Consequently, there are few possibilities to change the designers’ descriptions when
the MVL-12 package is referred.

8

5.3 VITAL

When MVL-12 is applied to the VITAL[3] libraries, it is indispensable to modify the assignments of
output values for instances, e.g. switches, 3-state elements, and MOS transistors, in which charge
decay can be handled, and ‘C’, ‘D’ and ‘P’ should be effectively used. Though the impacts for VITAL
specification might be relatively large, it should be accepted if the precise modeling is requested
for deep sub-micron designs.

5.4 SDF

The transition patterns should be added because the three additional values are introduced. The
current delay calculator, which can calculate the delay time from one value to another value,
should be improved. After the charge decay is considered in those EDA tools and SDF, it will be
easy to design dynamic circuits.

5.5 EDA tools

The impacts for EDA tools are various on account of the mechanisms to handle the “std_logic” type.
It may be minimized for EDA tools because only the static specification, i.e. value set and some
functions, are modified.

The new value set may cause errors in some EDA tools, e.g. simulators, because they can not
recognize new values. This problem may be solved after the re-compilation of the packages.
However, it is preferable to optimize the EDA tools for the new value set if the best environments
for designers are provided. For instance, the waveform viewers for the logic simulators have to
help designers to identify the additional values from the waveforms. Moreover, it will be requested
to improve the EDA tools which achieves some accelerations for a standard library, e.g. VITAL
simulators. Though it seems to be necessary to improve the logic synthesis tools to recognize the
added values, the modification can be minimized for those tools because the added values are able
to be handled as well as the other meta-logical values[4].

6 Further discussion for language extensions

In section 3, we discussed that it is impossible to describe the behavior of charge decay by the
resolution function within the current language specifications of IEEE Std 1076. Therefore, we

 impure function charged(driver: in std_ulogic_vector) return std_ulogic is
 alias previous: std_ulogic is charged'resolved_signal;
 signal resolved: std_ulogic;
 variable tmp: std_ulogic:= 'Z';
 begin
 -- resolve all inputs by static analysis (first stage)
 for i in driver'range loop
 tmp := resolution_table(tmp, driver(i));
 end loop;
 -- consider charge decay behavior when Hi-Z (second stage)
 if tmp = 'Z' then
 case previous is
 when 'X'|'W' => resolved <= 'C', 'Z' after previous'decay_time;
 when '0'|'L' => resolved <= 'D', 'Z' after previous'decay_time;
 when '1'|'H' => resolved <= 'P', 'Z' after previous'decay_time;
 when others => resolved <= 'Z';
 end case;
 else
 resolved <= tmp;
 end if;
 return(resolved);
 end;

Figure 10: Extended VHDL description for charge decay

9

consider what type of extensions for the resolution functions are required. As well as section 3, we
assume the resolution mechanism of the values, where two or more drivers drive one signal. One
example description out of various extensions is shown in Figure 10.
 Though the resolution function in IEEE Std 1076-1993 shall be pure function, the extended
resolution function “charged” is impure function. It has an attribute “resolved_signal”. This
attribute is attached to the signal which preserves the previous resolved value. Each reference of
the function should correspond to each resolution signal individually. In addition, the signal has a
attribute “decay_time”, which represents the decay time. “previous” is the signal which can refer
the previous value. In the function body, an intermediate variable “tmp” is calculated statically
from the values of the “driver”. The behavior of charge decay is considered. Therefore, if “tmp” is
high impedance, one of capacitive values is preserved in “resolved” for “decay_time” before
assigning 'Z'.

In summary, two types of new features are required if we realize the solution.
 - Resolved signals shall be referred to in the resolution function.

- Signal assignment statement shall be described in the resolution function.

7 Conclusion
We proposed that three capacitive values should be added into the standard values in IEEE Std
1164. The behavior of the realistic circuits is illustrated when the standard package is extended.
This extension will be essential for the model of dynamic circuits under the quarter-micron
technology. In order to design IPs with the dynamic circuits effectively using the standard package
of IEEE Std 1164, it shall be extended in near future.

Acknowledgements
This paper is the effort of VHDL Project Group/EDA Technical Committee/EIAJ in 1997. We
appreciate the collaboration with Mr. T. Kowatari, Mr. N. Fujiike, Mr. H. Sasaki, Mr. M. Yokoyama,
Mr. K. Makino, Mr. T. Kitahara, Mr. S. Sekiguchi, Mr. S. Katayama, Mr. K. Matsuzaki, Mr. M.
Mizuno and Ms. K. Fuse. We also appreciate Prof. M. Imai and Mr. S. Kojima for the technical
supports.

References
[1] “IEEE Standard VHDL Language Reference Manual”, Institute of Electrical and Electronics

Engineers Inc., IEEE Std 1076-1993
[2] “IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Std_logic_1164)”,

Institute of Electrical and Electronics Engineers Inc., IEEE Std 1164-1993
[3] “IEEE Standard for VITAL Application-Specific Integrated Circuit (ASIC) Modeling

Specification”, Institute of Electrical and Electronics Engineers Inc., IEEE Std 1076.4-1995
[4] “IEEE Standard VHDL Synthesis Packages”, Institute of Electrical and Electronics Engineers

Inc., IEEE Std 1076.3-1997
[5] R. Glover, D. Fairbairn, L. Cooke, S. Schulz, T. Inoue, R. Raghavan, J.L. Bories, W. Rhines

“Panel: Challenges in Worldwide IP Reuse”, in Proc. of 34th Design Automation Conference,
pp401 1997

[6] E.F. Girczyc, S. Carlson, “Increasing Design Quality and Engineering Productivity through
Design Re-use”, in Proc. of 30th Design Automation Conference, pp48 1993

[7] A.A. Jerraya, H. Ding, P. Kission, M. Rahmouni, “Behavioral Synthesis and Component Reuse
with VHDL”, Kluwer Academic Publishers, pp18 1997

