Extension of VHDL to support multiple-byte characters

Kiyoshi Makino Masamichi Kawarabayashi
Seiko Instruments Inc. NEC Corporation
6-41-6 Kameido, Koto-ku 1753 Shimonumabe, Nakahara-ku
Tokyo 136-8512 Japan Kawasaki, Kanagawa 211-8666 Japan
kmakino@sii.co.jp kaba@lsi.nec.co.jp

Abstract

Written Japanese is comprised of many kinds of characters. Whereas one-byte is sufficient for the Roman
alphabet, two-byte are required to support written Japanese. It should be noted that written Chinese
require three-byte. The scope of this paper is not restricted to written Japanese because we should consider
the implementation of the standard which covers the major languages using the multiple-byte characters.

Currently, VHDL does not support multiple-byte characters. This has proven to be a major impediment to
the productivity for electronics designers in Japan, and possibly in other Asian countries. In this paper, we
briefly describe the problem, give a short background of the character set required to support Japanese and
other multiple-byte characters language, and propose a required change in the IEEE Std 1076.

1. Introduction

VHDL[1] have recently become very popular to design the logical circuits all over the world. We, the
Electronic Industries Association of Japan (EIAdJ), have been working for the standardization activities with
the Design Automation Sub-Committee (DASC) in IEEE. In the meanwhile, the VHDL and other related
standards have evolved and improved. As the number of designers using VHDL increases so does the need to
support the local language though designers have asked EDA tool vendors to enhance their products to
support local language, it have often been rejected unfortunately.

There are several reasons for this lack of responses on the part of the EDA tool vendors. First, the vast
majority of VHDL based tools available today are developed and enhanced in western countries which use
the Roman alphabet. Hence, the developers do not know what is necessary to implement a multiple-byte
characters. Secondly, this is related to the first issue, since they do not know how to handle multiple-byte
characters[2] in their tools, they overestimate the complexity involved. Practically the required change can
be minimal. Thirdly, their software must be compliant with the IEEE Std 1076, and since the Language
Reference Manual (LRM) does not spell out the support of multiple-byte characters, they are reluctant to
deviate from compliance.

If the LRM were amended to support for multiple-byte characters, all three issues mentioned above would
be adequately addressed. A clear standard with implementation guidelines would remove the mystery
shrouding multiple-byte characters, and inclusion in the standard would ensure implementation.

2. Support of multiple-byte characters within VHDL

There are three levels of support for multiple-byte characters possible within VHDL. They are:
a) VHDL Identifier
b) CHARACTER/STRING literal
¢) Comment text

a) signal [FA¥{E5 : std logic;
b) assert false report "EEWHZHELITCET";
¢) Y<=not A; — HEFT DAL

Figure 1 shows an example of VHDL descriptions with Japanese characters

Figure 1 shows an example of VHDL descriptions with Japanese characters.

First, there is absolutely no need to support multiple-byte characters for VHDL identifiers. Some
designers request Japanese text as type of CHARACTER. But defining Japanese text as CHARACTER
type is not easy. Current CHARACTER type in STANDARD package is defined as enumeration type of each
character. Because the number of characters in Japanese or Chinese are huge (6000 - 34000), it is not
sufficient way to define a new character type as enumeration type. One possible way to define such new
character type in LRM is to refer other character set standard defined by ISO etc. Each Asian country has its
own character set standards, and these are always changing. Therefore it is not easy to make a consensus to
choose one character set. Though,we should request to support a new character type for multiple-byte
characters, but because of its technical difficulty, we have to consider it as a future work.

However, the comment texts are vitally important for designers. VHDL is considered as a specification
language and comments embedded within the VHDL

description are required to explain the expected behavior. St
This becomes even more vital as the VHDL description is
reused in a system-on-chip design environment. hd

We think that multiple-byte characters as VHDL Text Editar
comments are the most important issue and could be +

esolved in short term.
resolv mns T rm ‘Ir{:nut ﬁ; __H*:%jj:‘!},
X<=AtDE; — pragma label L1

3. Workaround employed today

There are three steps to support the comments using the +
multiple-byte characters in the available EDA tools. Filter Praogram

Y
Y<=not A;
X<=AtB; — pragma label L1

a) Officially support multiple-byte character
comments

b) Unofficially support multiple-byte character

comments +
¢) Do not support multiple-byte character WHOL Analyzer
comments

VHDL analyzer of type a) are few and far between, and not
offered by the major vendors. VHDL analyzer of types b)
and c) require a complicated procedure to guarantee that it
works correctly. CStop

This process is used for both types of tools, even though
some tools "unofficially" support multiple-byte character Figure 2: Traditional filtering procedure
comments. The unofficial support often results in

unexpected errors and problems, therefore b) and c) are

2

handled identically. The process is as follows: (See Figure 2.)
1. Write the VHDL with embedded multiple-byte code comments
2. Pass the VHDL description through a "filter" to remove or preserve the comments
3. Compile the VHDL code
4. Collect error encountered
5. Repeat from step #1 above.

This process is required to be repeated for each syntax error, modification, or enhancement of the VHDL
description. This is time consuming and a potential source of unintentional errors.

4. Overview of multiple-byte character set
"Character set" and "encoding method" are individual issues. "character set" means just a group of
characters. "encoding method" means how each character is represented in storage element of the computer.
Therefore, different encoding methods may be adopted to represent a single character set. ASCII has both
meanings of "character set" and also "encoding".

4.1 Character set

There are many character set standards in JAPAN and other Asian countries, e.g. JIS X 0208-1978, JIS X
0208-1983, JIS X 0208-1990 and JIS X 0212-1990. The number of characters in standard is not stable. New
characters appear, and old characters disappear for each re-standardization. Furthermore, there will
probably be more standards of character sets in the near future. Therefore, it is impossible to select one
character set standard to be supported as a comment text in VHDL.

4.2 Encoding method

Four popular encoding methods exist.

a) JIS ... Modal

b) Shift-JIS ... Non-Modal
¢) EUC ... Non-Modal
d) Unicode ... Fixed-width

Figure 3 shows how ASCII characters and Japanese characters are mixed in a same text by each encoding
methods.

JIS encoding is modal. In Figure 3-a, <KANJI-IN> and <KANJI-OUT> are escape sequence to change the
mode. In this method, actual Japanese character code use only 7-bit range, thus it might conflict with
normal ASCII code if the tool does not correctly handle the escape sequence. As JIS encoding method use
only 7-bit, it is used for Internet mailing system.

On the other hand, Shift-JIS use 8-bit code, and it is non-modal. This Shift-JIS encoding method has been
used for Japanese version of DOS, and Windows environment. (See Figure 3-b)

EUC(Extended UNIX Code) is also non-modal encoding, and it is generally used for UNIX operating
system. While Shift-JIS support two-byte code characters only, EUC can support three-byte code characters,
therefore EUC can also be used for Chinese characters. (See Figure 3-c)

Unicode (ISO-10646) defines character set standards and the encoding method. Each character always
has two-byte(16-bit) fixed-width code.

a) JIS
a b c <B5> $§ B H b 3 B OGS (]

a b c

61 62 63 1B—24—42 467C 4B-5C 386C 1B—28—4A 61 62 63

<KANJI-IN> <KANJI-OUT>

b) Shift-JIS
a b c¢c H . N i3 a b c
61 62 63 93-FA 96—VB B8C-EA 61 62 63
¢) EUC
a ¢ H . N i a b c
61 62 63 C6BFC CB-DC BS8-EC 61 62 63

d) Unicode

a b c H X E23 a b c
0061 0062 0063 66ES 672C SAGE 0061 0062 0063

Figure 3: Japanese encoding methods

However unfortunately, Unicode is not popular at least in Japan. Because there are no EDA tools to

handle Unicode practically, we think it is too early to support Unicode.

Basically, we think both EUC and Shift-JIS encoding should be handled in the programming language e.g.

C,VHDL. There are few requirements to handle JIS or Unicode now.

4.3 Range used for each encoding method

Each encoding method has individual range of encoding shown in Figure 4.

The character set of ISO 8859-1 is available in VHDL93, therefore we can use any single byte character
between 0x21 - 0x7E and 0xA1l - OxFF. But we can not use 0x80 - 0xAOQ specified in Shift-JIS encoding, or

0x8E,0x8F in EUC. These characters exceed the specification of VHDL93.

00 20 40 60 80 AD CO E0O FF
| | | |
150 88591 % A |Unused |2
2 7E Al FF
Shi f=JIS % Z IR 7
2 7E | 80 FC
UG % ZEA W7 2
2 7E | 8E, &F |A1 FE

Figure 4: Encoding range

4

Yénot A; — {550
4%

Ox8F8A => 10001111 10001010
0001111 0001010 => OxOF0A

Figure 5: Example of misinterpretation

ISO 8859-1 does not define characters between 0x80 - 0xAO. If the tool treat them as 7-bit character (not in
8-bit), then 0x80 - 0xAO become 0x00 - 0x20. These characters often cause problem.

For instance, when one of the Japanese characters in comments is 0x8F8A shown in Figure 5, it is out of
range of ISO 8859-1. If a tool handles it as 7-bit code instead of 8-bit code, 0x8A become 0x0A, and the poor
tool misunderstand it as <end of line> (0x0A). Though some existing EDA tools still have those problems
EDA vendors sometimes didn't improve it even customer asked them.

5. Required Change for VHDL LRM

In the IEEE Std 1076-1993, There are 2 sections related to character set and comments. Section 13.1 defines
character set in VHDL text as ISO 8-bit character set [ISO 8859-1:1987(E)]. But ISO 8859-1 is not
sufficient, so we have to expand it to include 0x80 to 0xAO character also. Section 13.8 defines comment. We
think this section should explicitly define that it allow any character sequence of character in ISO 8859-1
and 0x80 to 0xAO character from two adjacent hyphens until end of line. As we discussed earlier, we can not
choose exact character set. Therefore LRM should define the range of character which appear at the
comment text.

6. Conclusions
We presented the reason to support multiple-byte characters in VHDL. Especially the comments written in
multiple-byte characters are essential for Asian designers. Moreover it is not difficult to implement to

handle them. Consequently the comment in multiple-byte characters should be supported in the next
version of VHDL.

Acknowledgments

This paper is the effort of VHDL Project Group/EDA Technical Committee/EIAJ in 1997. We appreciate the
collaboration with Mr. T. Kowatari, Mr. N. Fujiike, Mr. H. Sasaki, Mr. M. Yokoyama, Mr. T. Kitahara, Mr. S.
Sekiguchi, Mr. S. Katayama, Mr. K. Matsuzaki, Mr. M. Mizuno, Ms. K. Fuse, Mr. H. Imai and Mr. M.
Sameshima. We also appreciate Prof. M. Imai and Mr. S. Kojima for the technical supports.

References

[1] IEEE Standard VHDL Language Reference Manual , Institute of Electrical and Electronics Engineers
Inc., IEEE Std 1076-1993
[2] Ken Lunde, "Understanding Japanese Information Processing", O Reilly Associates, Inc. 1993

